大学的徐和他的团队提出了一种基于恒力机制的机器人打磨末端执行器的设计。所设计的工业机器人驱动末端执行器进行抛光,末端执行器被动调节接触力。力的精度为0.3 N,使得工件的表面质量具有很高的一致性.
从上面提到的打磨机器人的发展,可以明显看出打磨机器人正在走向标准化。控制力和位移精度是末端执行器设计的主要研究方向。采用恒力打磨和恒力夹紧控制力,大大提高了打磨精度和夹紧稳定性。然而,由于材料特性和恒力机构尺寸的限制,当末端工具移动时,末端执行器具有不足的负载、过于复杂的结构和不足的平面刚度。
表示由传感装置获得的待抛光工件的数据模板;待抛光工件的局部模板特征;通过精细配准显示B在A中的位置。配准后便于磨具规划工件的加工路线,可以大大提高加工精度。高精度匹配对于自动打磨至关重要。
上述基于2.5D局部特征信息的打磨方法,深度方向精度较低,可用于加工精度要求不高的零件。使用局部信息抛光的缺点是需要额外的步骤来获得表面信息,并且像2D方法一样,这需要从单独的特定视点进行表示。
该方法使用产品设计模型来设计尺寸公差规格,以预测工件几何模型中的可能变化,使用迭代近点(ICP)方法来将每个点云与来自工件的测量点云进行匹配.为了进一步提率和精度,魏提出了一种自动评定铸件加工余量的方法。扫描的点云数据通过“初始对准”和“配准”两个阶段与设计模型对准,以找到配准,并基于配准结果评估加工余量.
在工件打磨方面,胡等开发了机器人去毛刺倒角系统,其中操作人员可以选择计算机辅助设计(CAD)模型上的任何特征,并将所选特征导出用于轨迹生成的刀具路径。然而,人工特征选择是低效的。张等提出了一种用于精密铸造有几何偏差叶片的自适应打磨方法.将叶片的测量数据与设计模型进行匹配,求解相应的匹配矩阵,确定铸造叶片的位置。