在铸件打磨过程中,温度、噪声、振动、灰尘、光线等不确定性强的干扰不可避免,限制了视觉传感器的推广和使用。激光传感器可以弥补上述的一些不足,特别是那些由灰尘引起的不足.
早在20世纪70年代,Nitzan等人就利用激光测距系统的距离和强度信息来描述室内场景,激光测距的稳定性和可靠性得到了充分的验证.激光扫描技术在测绘领域得到了进一步发展。在20世纪80年代和90年代,Kak提出在机器人的末端安装单目激光视觉传感器,以扫描被测物体的表面。
二维图像信息集中在平面上,机器人打磨提供的深度信息不准确。因此,更的2.5D信息具有表示3D对象的优势,从而提高可靠识别的机会.
2008年,维尔马提出了一个2.5维加工特征识别系统。它用于筛选出2.5D零件特征,以确定加工方向.2009年,Siebert等人将2D SIFT算法扩展到2.5D进行应用;所提出的算法可以利用3D旋转不变性的局部特征直接进行匹配。张雨薇等人提出了一种从2.5D浅浮雕重建基本3D形状的方法,并通过法线传递和泊松表面重建来优化人脸形状.张等人构造了一个2.5D的高度场用于人像浮雕,以增像的外观,并将2.5D技术应用于人像浮雕的处理。该技术也可以应用于人像浮雕的表面打磨。
就像SUHNER加工单元一样,机器人可以很容易地在不断变化的生产环境中执行不同的任务。在卫生洁具行业,大型铸铁件正在生产线上使用SOMEX max 100型加工设备和FANUC 200 IB型机器人进行加工。甚至在测试实验室中的应用。在美国一所工程大学,正在使用Kuka机器人(KR-Fortec)和SUHNER加工单元(BEX35-ISO)进行测试。这些材料测试是为的航空航天公司之一进行的。称重传感器测量加工航空航天工业常用的不同材料时的力(应力)。材料范围从复合材料到钛。加工数据从刀夹内的传感器无线传输到笔记本电脑进行存储和分析。测试结果用于改进材料厚度或选择,以及理解和预测载荷极限。