为了克服这种老化技术带来的问题,沸水反应堆的管理人员决定在管网的重要区域应用由优化焊接材料制成的保护涂层。
为了使管段的内部准备好接受这种保护覆层,有必要在管道的整个内圆周上铣出一个宽度为60毫米、深度为4.5毫米的凹槽。
由INSPECTOR SYSTEMS开发的打磨机器人可以快速、可靠地处理这项困难的工作,并且正如人们所期望的那样,考虑到行业的大量安全因素,没有风险。
借助超声波和涡流技术以及射线照相检测和染料渗透检测,可以检查一段管道中的单面焊缝。在日常维护和系统关闭期间,应定期重复这些检查。管道内壁上焊缝根部的存在会对结果产生很大影响。焊缝内侧的焊根会极大地扭曲检查结果,因为很难确定被检查的是小裂缝还是焊根。
铸造后处理现场打磨效果根据实践,打磨腔体红域时容易产生振动。手工打磨时,手持工件打磨过程中存在长时间的强烈振动暴露,导致手臂振动综合症,危害工人身体健康.频繁的振动还会磨工件和工具造成伤害,因为工具和工件在大振动时容易损坏。在机械打磨过程中,需要很大的保持力来固定铸件,而这个力可能会损坏铸件。受到较大振动干扰的传感装置不能地捕获待抛光的工件,并且采集的包含大量噪声的数据会影响打磨精度。大的振动导致末端执行器控制的大量噪音,并对设备的刚度产生影响。大的振动对工件的夹紧也有很大的影响,这意味着工件很容易变松。大的振动也会导致热碎片飞溅。
Moravec提出了用于双目视觉图像匹配的角点检测器,而Harris提出了用于图像匹配的Harris角点算子。21世纪初,出现了大量的相关方法。2001年,提出了一种数字相移阴影技术,它只拍摄一幅图像:参考光栅线在变形物体表面上的投影。通过在其平面内移动虚拟参考光栅来计算相移.2010年,穆罕默迪提出在物体表面投射莫尔光栅;物体表面形状的变化引起光栅条纹的相位变化,并且可以提取相位的特定变化以获得物体表面的三维信息.近年来,在工业机器人和打磨相关领域也有许多应用。