铸造后处理现场打磨效果根据实践,打磨腔体红域时容易产生振动。手工打磨时,手持工件打磨过程中存在长时间的强烈振动暴露,导致手臂振动综合症,危害工人身体健康.频繁的振动还会磨工件和工具造成伤害,因为工具和工件在大振动时容易损坏。在机械打磨过程中,需要很大的保持力来固定铸件,而这个力可能会损坏铸件。受到较大振动干扰的传感装置不能地捕获待抛光的工件,并且采集的包含大量噪声的数据会影响打磨精度。大的振动导致末端执行器控制的大量噪音,并对设备的刚度产生影响。大的振动对工件的夹紧也有很大的影响,这意味着工件很容易变松。大的振动也会导致热碎片飞溅。
在视觉识别过程中,打磨环境复杂,适应性好、精度高的传感设备是重点突破方向。传感设备需要准确感知工件的位置和形状等信息。感知后,可以使用高精度的匹配视觉算法。迫切需要改进登记工作。
高速打磨系统需要恒定打磨接触力的反馈控制。打磨力的高精度控制对于复杂零件打磨表面的一致性非常重要。恒力机构在打磨领域的应用为打磨力的控制提供了新的研究思路。
在打磨过程中,材料的去除量直接影响打磨精度。为了获得去除材料量的估计,需要离线测量来建立预测模型。目前,预测模型精度低,对环境影响严重。一个能够准确预测材料去除的模型可以在打磨材料去除过程中获得更高的效率和精度
涡轮叶片、风力叶片、新能源客车车体、高铁车体等复杂零部件广泛应用于航空航天、能源、汽车、轨道交通等行业,其制造水平代表着一个国家制造业的竞争力。一般来说,复杂构件可以分为复杂曲面和复杂结构。前者的特点是自由曲面、薄壁表面和难加工材料,并要求高尺寸精度和表面质量。后者具有尺寸大、材料去除率高、多品种小批量生产的特点。在锻造、铸造、模制或机械加工之后,这些部件通常需要进行打磨或精加工,以进一步提高轮廓精度和表面光洁度。因此,掌握这种复杂零件的高精度打磨技术是制造业面临的严峻挑战。