通过使用打磨机器人,可以容易地去除焊缝根部,从而可以获得准确可靠的测试结果。此外,去除焊缝根部可以改善管壁的内部。这意味着焊接接头对机械磨损和热磨损的抵抗力增加了。
机器人可通过管道中的闸阀轻松部署,并可远程控制,以便定位操作员可能需要的任何接头。
作为标准打磨机器人的补充,也可以为客户提供满足其特定和个性化要求的机器人。
机器人技术和合格的打磨和抛光工艺分别得到了不同国家/国际公司和风险管理组织的认可。
目前,铸件打磨加工面临着诸多挑战,如打磨环境中的大量噪声、非结构性铸件实体、整体形状变化中的倾斜等,这些都限制了铸件打磨加工的发展。因此,上述问题需要深入分析。
麻省理工学院成功研制出世界上台计算机数控(CNC)铣床.数控铣床的出现带来了新的机械打磨设备和铸件后加工打磨的新工艺。用数控铣床进行铸造后处理时,将待抛光的工件固定在铣床工作空间的标准化夹紧装置上,由数控程序控制磨具进行打磨加工.虽然数控铣床可以用于铸件的后加工打磨,但其工作空间小,机床灵活性差。作为机床的替代品,工业机器人越来越多地应用于打磨领域。1986年,麻省理工学院的Tate,A. R .利用机器人实现了焊缝的自动打磨,将向力控制在40 N,参考力的大频率控制在2.3 Hz.后来,另一位研究人员彭J等人,设计了被动打磨装置,研究了打磨过程的特点以及偏转角在被动打磨过程中的影响。为了满足打磨复杂零件的要求,哈尔滨工业大学郭等设计并研制了一种工作空间灵活、姿态调整灵活的复合五自由度工作机器人
Perdereau,V提出了一种混合机器人位置控制方案。随后,周等人提出了一种基于自适应阻抗控制的打磨机器人混合控制策略近设计了一个模糊力控制器,在除锈过程中模仿人类的行为。随后,赵等人提出了一种基于模糊比例积分微分(PID)的力/位扰动抑制控制策略。对于预期的15 N接触力,所提出的控制策略可以实现13.4%的力控制精度,并且0.0362 mm的材料去除深度可以达到1.2微米的精度.朱等提出了一种基于一维力传感器PID控制器的动态控制方法。抛光表面的粗糙度Ra %3C 0.4微米,材料去除深度更稳定,偏差保持在0.003 mm,40 N时的均方差为0.37 N