在石器时代,石磨主要用来制作各种刀、石斧和其他工具。在青铜时代,中国作为早采用铜冶炼的国家,掌握了先进的铸造后处理技术。锉刀用于弥补铸造缺陷,使铸件表面光滑,并使和工具更加锋利和抛光.进入铁器时代后,出现了旋转式磨具,为后续的机械打磨提供了参考。随着铁器和旋转工具的出现,以及蒸汽机出现后次工业革命的到来,制造材料主要是铸铁。虽然铸造产品发生了变化,但打磨方法仍然采用手工打磨。西门子在1866年开发了发电机,为机械打磨提供了技术支持。1914年,美国3M公司开发的砂纸产生了一种用于铸件后处理的新打磨工具。发展随后进入铸件后处理中人工与机械打磨相结合的时期,一直延续至今。
作为旋转打磨模式与马达和气动源相结合的结果,气动打磨设备和电动打磨设备出现了。该设备有两种打磨方式。一种是在打磨大型零件时,将待抛光的工件固定,电动打磨设备相对工件表面移动,完成打磨。另一种是在加工小零件时,电动打磨设备是固定的,通过移动工件实现旋转磨头的相对运动来进行打磨。
1875年,Brown和Sheeper设计了锯床和磨床,结合机械设备的打磨方法开始出现。这种结合了手工和基于设备的打磨的打磨方法一直延续至今。根据磨床的原理,已经为特殊零件设计了特殊的磨床
Moravec提出了用于双目视觉图像匹配的角点检测器,而Harris提出了用于图像匹配的Harris角点算子。21世纪初,出现了大量的相关方法。2001年,提出了一种数字相移阴影技术,它只拍摄一幅图像:参考光栅线在变形物体表面上的投影。通过在其平面内移动虚拟参考光栅来计算相移.2010年,穆罕默迪提出在物体表面投射莫尔光栅;物体表面形状的变化引起光栅条纹的相位变化,并且可以提取相位的特定变化以获得物体表面的三维信息.近年来,在工业机器人和打磨相关领域也有许多应用。