质量和一致性
经过适当编程和优化的机器人将一致地打磨和抛光每个零件,消除了过度打磨和底切等常见的操作员错误。这减少了报废零件的数量,并提高了您送出的零件的整体质量。
生产力和效率
像所有形式的工业自动化(包括机器人焊接)一样,机器人打磨有助于减少生产线上的周期时间。机器人可以全天候执行焊接打磨和倒角任务,并且它们能够施加更大的力,从而在打磨过程中实现更快的切割速度。
长期成本节约
虽然实施自动化的前期成本可能很高,但在生产率和一致性方面的收益有助于确保投资收回成本。
铣削机器人和机械手可用于管道系统内部凹槽需要打磨和局部缺陷必须立即清除的各种情况。
铸造后处理现场打磨效果根据实践,打磨腔体红域时容易产生振动。手工打磨时,手持工件打磨过程中存在长时间的强烈振动暴露,导致手臂振动综合症,危害工人身体健康.频繁的振动还会磨工件和工具造成伤害,因为工具和工件在大振动时容易损坏。在机械打磨过程中,需要很大的保持力来固定铸件,而这个力可能会损坏铸件。受到较大振动干扰的传感装置不能地捕获待抛光的工件,并且采集的包含大量噪声的数据会影响打磨精度。大的振动导致末端执行器控制的大量噪音,并对设备的刚度产生影响。大的振动对工件的夹紧也有很大的影响,这意味着工件很容易变松。大的振动也会导致热碎片飞溅。
自动检测打磨过程中焊缝的打磨终点,监控打磨焊缝的几何变化。对大量实验打磨数据进行端到端处理的深度学习方法可以获得良好的材料去除预测结果.为了提高抛光机器人的精度,张等将声传感与XGBoost算法相结合,对砂带抛光中的材料去除进行预测,平均百分比误差为4.373%。
在预测打磨过程中的材料去除时,基于模型的方法主要关注打磨过程中的基本参数;因此,基于模型的方法产生高精度的材料去除结果。然而,许多因素影响打磨材料的预测。以神经网络为代表的数据驱动方法为处理和分析提供了解决方案。